
34 The Delphi Magazine Issue 46

Beating the System:
Deciphering The DCU, Part 1
by Dave Jewell

The DCU file is one of several
reasons for the extraordinary

compilation speed advantage of
Delphi over more conventional
systems using OBJ files. DCU files
allow the compiler to read symbol
table information very quickly. The
.OBJ file was designed back in the
days when many microprocessor
systems (not PCs, they came later)
used a paper tape punch and
reader as mass storage devices!
Consequently, every record in an
.OBJ file had an associated
checksum byte to allow for those
frequent times when a paper tape
reader misread a byte of data.

With the advent of high speed,
high capacity hard disks and huge
amounts of RAM, Borland were
able to adopt a much more efficient
approach in the design of TPU, and
later DCU, files. In essence, you can
think of a DCU file as a tear-off,
re-locatable chunk of compiler
symbol table. Viewed in this way,
it’s no surprise that the technology
is far faster and more efficient than
the old .OBJ file approach. The
compiler finds a USES Widgets state-
ment, inserts the various symbol
definitions from the WIDGETS.DCU
file into the symbol table, and then
continues on its merry way.

As you will undoubtedly be
aware, one of the (few) irritating
aspects of Delphi development is
the way in which the format of DCU
files appears to change every time
Borland update the development
system. What this means in simple
terms is that if your application is
reliant on third party components
(and many applications are), then
you’ve either got to purchase the
source code along with each third
party control you buy, or else
you’ve got to hope that the tool
vendor in question will still be
around when the time comes to
upgrade to a more recent version
of Delphi. The former option can be

expensive while the latter option is
obviously risky, particularly when
dealing with small outfits.

In practice, most reputable com-
ponent suppliers are aware of this
problem and are happy to provide
source code to their components,
often as standard. I’m thinking of
companies such as TurboPower
(www.turbopower.com) who
always supply full source code to
the products they sell. I’m not
anticipating that TurboPower are
likely to disappear anytime soon
but if, for the sake of argument, the
company was to disappear tomor-
row, all its existing customers
should have relatively few prob-
lems in moving existing software to
(say) Delphi 5, because they’ve got
full source code.

By contrast, consider what
would happen if you purchased the
PixelGraphics image processing
library from Peter Beyersdorf
(www.beyersdorf. com). In case
you’re not aware of this product,
PixelGraphics is a brilliant set of
image processing components for
Delphi/C++Builder, besides which
my own humble efforts of last
month pale rapidly into insignifi-
cance. In the past, I’ve waxed lyri-
cal about the PixelGraphics tools,
and I’d go so far as to suggest that
this is still the best set of native
VCL image processing compo-
nents around. But on the negative
side, Peter still hasn’t provided
official support for Delphi 4,
despite the fact that (by the time
you read this) Delphi 4 will have
been around for almost twelve
months. Moreover, Peter doesn’t
provide source code to the
PixelGraphics library and (at the
time of writing) he hasn’t been
seen in the PixelGraphics
newsgroup for a couple of months.
It doesn’t require Mensa member-
ship to get the impression that
Peter has lost interest in his own

brainchild, and if you were to pur-
chase the graphics library at this
point in time you might have seri-
ous difficulties when Delphi 5 does
appear. (If you are reading this
Peter, I’d love you to prove me
wrong: bite the bullet, release a
Delphi 4 version, make the source
code available as an optional
extra, show up in the newsgroup
now and again, and I’ll be delighted
to publish a retraction.)

So Why Decipher The DCU?
If source code is available from
most component writers, why
bother deciphering the format of
DCU files at all? Let me begin by
stating that I’m intending nothing
illegal here. You’ll see frequent
requests for the DCU file format in
the Delphi-related newsgroups,
and I get the impression that many
people think that an understand-
ing of the DCU file format would
enable them to ‘sourcify’ third
party Delphi units without bother-
ing to purchase the source code.
This is absolutely not the case, and
it certainly isn’t my intention here.

Any Delphi programmer worth
his salt will fully understand that
code can be disassembled much
more easily by compiling it into a
package than would ever be the
case with a standalone DCU file. A
DCU file typically ‘exports’ a
number of public symbols such as
types, variables, classes and meth-
ods. At the same time, it obviously
‘imports’ a large amount of
information too, every time you
call the Length function, some
behind the scenes compiler magic
will transmogrify this into a call to
the appropriate (depending on the
type of string involved) library
routine in the System unit. These
relocatable references obviously
complicate the process of disas-
sembly, but by compiling the unit
into a package, all these fixups are

June 1999 The Delphi Magazine 35

automatically done for you. A good
disassembler such as IDA-Pro
(www.datarescue.com) will show
all the exports from the package,
and the latest version even under-
stands the format of Delphi and
C++Builder RTTI information! This
is why I commented that Borland’s
decision to distribute the Delphi 4
IDE in packaged form was like
manna from heaven to those who
like to see what’s going on under
the hood.

But I digress. Hopefully, the
above will have convinced you that
for serious disassembly, packages
are the only way to travel. My moti-
vation in discussing the internals
of DCU files is simply an effort to
precipitate the same thing that
happened with the Windows .HLP
file format. Back in the September
and October issues of Dr Dobb’s
Journal, Pete Davis described the
hitherto undocumented format of
Windows .HLP files. Although the
initial information was incomplete,
it encouraged others to get
involved in unravelling the file
format, the end result being that
the format is now pretty well
understood, with all manner of
shareware, freeware and commer-
cial utilities around which can
directly access .HLP files.

This is what I’d like to see
happen with DCU files. I can’t claim
to have anything more than a rudi-
mentary understanding of DCU file
internals yet, but it’s my hope that
the information presented here
will encourage others to work on
the problem and come up with
more detailed information,
thereby making it possible to write
new classes of Delphi program-
ming tools and IDE add-ins. As an
example, I’ve from time to time
seen newsgroup messages asking

for information on how to hook
into Delphi’s ‘Kibbitz’ system (the
internal name for the code comple-
tion stuff which displays parame-
ter information and possible
method calls while you type). By
parsing the content of a DCU file
from within a Delphi expert, a
similar effect could be achieved.

But What About
Version Problems?
But what about versioning prob-
lems, I hear you cry! Don’t Borland
claim that they keep the DCU file
format private specifically because
the format changes with each new
release of the compiler?

Now and again, I’ve suggested
that Borland should consider
making the DCU file format avail-
able, but this has been pretty much
ignored. At other times, I’ve sug-
gested that even if the company
doesn’t wish to make the file
format available, they might
release a conversion utility,
thereby allowing, for example,
Delphi 3 DCUs to be upgraded for
compatibility with Delphi 4. Again,
this has provoked no response.
The fact that Borland
doesn’t seem willing to
release a conversion

utility (surely a simple undertak-
ing for those with full details of the
DCU changes that result from one
version change to the next?) sug-
gests that the company must have
some other motivation in not
making this information available,
and that the versioning excuse is
simply that: an excuse. Well, I’ve
got no axe to grind, but from what
I’ve learned about the DCU file
format so far, the overall structure
of the file format has not changed
radically since Delphi 2. Make of
that what you will...

Some years back, Borland actu-
ally promised that they would
freeze the DCU file format, making
it possible to reuse existing object
files with later versions of the
development system. However,
for whatever reason, this promise
was never fulfilled.

DCU File Format Basics...
Right then, I’ve tortured you
enough. Let’s roll up our sleeves
and make a start.

Every DCU file begins with a
‘magic’ four-byte signature. If this
signature isn’t present, then we
can be pretty sure that we’re not
dealing with a valid DCU file.
Borland have cunningly changed
this magic signature value from
one version of Delphi to the next.
The signature values that I’m
aware of are as follows:

D2Magic = $50505348;
D3Magic = $44518641;
D4Magic = $4768A6D8;
B3Magic = $475896C8;

➤ Figure 2: It looks
like complete junk,
doesn't it? But if
you compare this
hexadecimal dump
of a DCU file to the
information
mentioned in this
month's article, you
should be able to see
the magic signature,
file length and
compile date/time.

➤ Figure 1:
This program
(included on this
month's disk) scans
an entire hard disk
for DCU files,
displaying the
version and compile
date/time data for
each file found.

36 The Delphi Magazine Issue 46

Thus, D2Magic, D3Magic and D4Magic
are the signature values for Delphi
2, 3 and 4 DCU files. The B3Magic sig-
nature relates (I think!) to the DCU
files supplied with C++Builder 3. I
have several thousand DCU files in
various places on my hard disk,
and the only place where I discov-
ered files with the B3Magic signa-
ture was in the \Lib\Obj directory
of C++Builder 3.

Following the four-byte magic
signature is a 32-bit integer that
specifies the size of the DCU file in
bytes. This file size is inclusive (ie
it includes the preceding magic sig-
nature) and corresponds directly
to the file size as reported by DOS,
again, you should check that it
does. As a third and final check, if
you seek to the end of a DCU file,
you should find that the last byte in
the file has a value of $61. This

represents a sort of end of file
marker for DCU files and is present
in every DCU file I’ve encountered.

Next, after the file length speci-
fier is another 32-bit quantity
which indicates the date and time
when the unit was compiled. Gen-
erally speaking, this will be the
same as the DOS modification
date/time of the DCU file itself, but
this need not be so. If you use a hex
editor to fiddle around with the
innards of a DCU file, use a ‘touch’
utility to alter the modification
time, or whatever, then the inter-
nal compile date/time will obvi-
ously differ from the file’s
modification date/time. Why is it
necessary for the development
system to store the unit’s compile
time into the DCU file itself? The
reason, of course, is to do with
Delphi’s own internal ‘make’ algo-
rithm. When you compile the cur-
rent application, Delphi examines

each unit to determine whether it
needs to be recompiled. If unit A is
dependent on unit B, and it turns
out that unit B was compiled after
unit A, then the compiler will auto-
matically recompile unit A as well.
By embedding the compilation
time into the DCU, the make
system is immune to user
modifications of the file date/time.

The 32-bit compile time is in
standard DOS format: a packed
16-bit time field, followed by a
packed 16-bit date field. This can
be converted to a standard
TDateTime quantity using the
FileDateToDateTime routine in the
SysUtils unit.

There is one strange wrinkle
here. Borland-supplied DCUs fre-
quently store the value $FFFFFFFF
into this date/time field. It’s best to
check for $FFFFFFFF because if this
value is inadvertently passed to
the FileDateToDateTime routine,

unit Main;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, ExtCtrls;

const
// Magic signatures
D2Magic = $50505348;
D3Magic = $44518641;
D4Magic = $4768A6D8;
B3Magic = $475896C8;
// DCU record tags
Tag_End = $61;

type
TForm1 = class(TForm)
Scan: TButton;
StatusBar1: TStatusBar;
TreeList: TListView;
procedure ScanClick(Sender: TObject);
private
Scanning: Boolean;
procedure ScanDrive (const Path: String);
procedure FoundOne (const PathName: String);

public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.ScanClick (Sender: TObject);
var
p: PChar;
szBuff: array [0..255] of Char;

begin
Scanning := not Scanning;
if Scanning then begin
Scan.Caption := 'Stop Scan!';
Screen.Cursor := crHourGlass;
TreeList.Items.Clear;
TreeList.Items.BeginUpdate;
try
p := szBuff;
GetLogicalDriveStrings (sizeof (szBuff), szBuff);
while Scanning and (p^ <> #0) do begin
if GetDriveType (p) = Drive_Fixed then
ScanDrive(p);

Inc(p, 4);
end;

finally
Scanning := False;
Scan.Caption := 'Scan!';
Screen.Cursor := crDefault;
TreeList.Items.EndUpdate;

end;
end;

end;
procedure TForm1.FoundOne (const PathName: String);
var

eof: Byte;
S: String;
Valid: Boolean;
fs: TFileStream;
Item: TListItem;
Magic: array [0..2] of LongInt;

begin
fs := TFileStream.Create (PathName, fmOpenRead);
try
fs.Read (Magic, sizeof (Magic));
fs.Position := fs.Size - 1;
fs.Read (eof, sizeof (eof));
Valid := (Magic [1] = fs.Size) and (eof = Tag_End);

finally
fs.Free;

end;
if Valid then begin
Item := TreeList.Items.Add;
Item.Caption := PathName;
case Magic [0] of
D2Magic : S := 'Delphi 2';
D3Magic : S := 'Delphi 3';
D4Magic : S := 'Delphi 4';
B3Magic : S := 'C++ Builder 3';
else S := '???' + IntToHex (Magic [0], 8);

end;
Item.SubItems.Add (S);
if Magic [2] = $ffffffff then
S := 'Invalid date/time'

else
S := FormatDateTime('dddd, mmmm d, yyyy, hh:mm AM/PM',
FileDateToDateTime (Magic [2]));

Item.SubItems.Add (S);
end;

end;
procedure TForm1.ScanDrive (const Path: String);
var
Res: Integer;
SR: TSearchRec;

begin
Application.ProcessMessages;
StatusBar1.Panels [0].Text := 'Scanning ' + Path;
Res := FindFirst (Path + '*.*', faAnyFile, SR);
try
while Scanning and (Res = 0) do begin
if SR.Name [1] <> '.' then begin
if UpperCase (ExtractFileExt(SR.Name)) = '.DCU' then
FoundOne (Path+SR.Name)

else if ((SR.Attr and faDirectory) <> 0) then
ScanDrive(Path + SR.Name + '\');

end;
Res := FindNext (SR);

end;
finally
FindClose (SR);

end;
end;
end.

➤ Listing 1

38 The Delphi Magazine Issue 46

then you’ll get an exception.
What’s the significance of storing
$FFFFFFFF into the date/time field?
I’m not sure, I haven’t experi-
mented here, but it’s possible that
doing so will disable the internal
‘make’ logic.

Desperately Seeking DCUs...
Earlier, I stated that I’d searched
through several thousand DCU
files and only been able to detect
the B3Magic signature in those
belonging to C++Builder 3. Do you
really think I’m such an anorak that
I’d do this by hand? Well, no, I’m
not quite that bad! Instead, I devel-
oped a small DCU searching pro-
gram, which you can see running in
Figure 1. It basically searches your
entire hard disk (including all the
different DOS partitions) for any
DCU files it can find, validating
them using the checks that I’ve
mentioned earlier.

The source code to the DCU
Seeker program is shown in Listing
1. Basically, it consists of a
TListView component operating in
‘report’ mode, along with a status
bar control to display the progress
of the disk seeking operation. You
can interrupt the recursive file
search at any time; if you do so the
listview will simply display infor-
mation on the DCUs that have been
found so far. The program is very
straightforward, using the nifty
GetLogicalDriveStrings API call to
provide a list of logical disk drives,
from out of which we scan only the
fixed disks via the ScanDrive
routine.

Inside ScanDrive, the status bar
caption is updated, the disk is
searched for DCU files, and
ScanDrive calls itself recursively
every time that a subdirectory is
sound. Every encountered DCU file
is passed to the FoundOne routine in
order to be validated. Inside
FoundOne, we open the DCU file by
creating a TFileStream object and
then read the first 12 bytes of the
file, corresponding to the signa-
ture, file size and compile-time
quantities that I’ve discussed
above. The code then seeks to the
end of the file, reads the final byte
of the DCU and checks that it’s
equal to Tag_End while also

ScanLine Secrets: Matters
Arising And More Ideas...
I don’t know about you, but by the time I’ve finished writing some new Delphi
application, I can often think of a faster, more efficient way of getting the
same job done. Very similar things could be said about writing magazine arti-
cles on programming! As far as I know, there weren’t actually any bugs in last
month’s code (famous last words!) but since I wrote that article, a few other
things have occurred to me which I think are worth mentioning.

Firstly, you’ll remember that I replaced the Borland supplied definition of
TRGBQuadArray with a new definition that looks like this:
TRGBQuadArray = array [Word] of TRGBQuad;

This was done because the Borland code used a Byte range as the index of the
array, effectively limiting the TRGBQuadArray to working with bitmaps no
more than 256 pixels wide, not much use with today’s hardware. I don’t
expect that you’ll come up against a pixel width limit of 65536 any time soon,
but if you really want to future-proof that code, then you can rewrite that
declaration to look like this:
TRGBQuadArray = array [0..0] of TRGBQuad;

If this declaration leaves you somewhat baffled, suffice it to say that declaring
an array with upper and lower bounds of zero is a venerable old technique
which goes right back to the days of DOS-based Turbo Pascal and may even
have been implemented in the old UCSD Pascal compiler. By declaring an
array in this way, you’re essentially telling the compiler that you want to dis-
able range-checking on the supplied array subscript, and that you want to be
able to pass any integer (variable or constant) as an array index. Normally, if
you’ve got runtime range checking disabled, the compiler will only complain
if you pass an out-of-bounds constant as an array subscript, but with this tech-
nique, you can pass a constant value equal to MaxInt (2,147,483,647) and the
compiler will be perfectly content. Now that’s what I call a big bitmap!

Secondly, for reasons of space, I didn’t include a routine for greyscaling a
bitmap. However, converting a bitmap to greyscale is actually extremely easy.
Here’s how to do it: you simply need to walk through each pixel of the
bitmap, using the ScanLine property as demonstrated last month. For every
pixel in the bitmap, add up the sum of the red, green and blue components
and then divide the result by three to get the overall brightness level of that
particular pixel. Then, set the red, green and blue components of the pixel to
this value. This technique effectively preserves the relative brightness levels
of each pixel, while removing all the colour information. Because the RGB
components of each pixel are always the same, you just get lots of different
shades of grey, hence, a grey-scaled bitmap. I haven’t included any code to do
this here, but if you’ve read last month’s column, you’ll appreciate that it’s
trivial to implement.

Finally, I’ve been messing around with PhotoShop over the last few days.
Devotees of this excellent graphics program will be aware that a variety of
plug-ins are available to increase the variety of special effects implemented
by PhotoShop. In particular, I’ve been playing with a set of tools called NVR
BorderMania 3.0 which I found at http://www.mediaco.com/nvr/filters.html.
These plug-ins are freeware, can be used without restriction and can be used
to put shaded borders around an image so as to give it a 3D ‘look’. An example
of this is the Delphi 3 splash screen shown below. Here, you can see that
shaded borders have been used to create a bevelled three-dimensional effect.
It occurred to me that you could use the brightness-tweaking code from last
month’s article to programmatically
achieve the same result, increasing the
brightness of the top and left borders and
reducing the brightness of the bottom and
right borders. Maybe some enterprising
individual would like to write a new Delphi
button component which takes a bitmap
and automatically tweaks the border
brightness to create a nice effect? Let me
know if you succeed...

June 1999 The Delphi Magazine 39

checking that the internal file size
specifier agrees with the physical
length of the file.

If all this works out ok, the DCU
signature is then checked, and the
appropriate file type string is
added to the list item. Finally, I
perform an explicit check to see if
the internal compile time/date
equals $ffffffff. If not, then
FormatDateTime is called to return a
prettily-formatted date/time for
the tree-list display.

Conclusions
But what lies after those twelve
bytes that I’ve discussed so far?
For that, I’m afraid you’ll just have
to wait for next month’s column!
This month, I was keen to spend
some time explaining my motiva-
tion for deciphering the DCU file
format and effectively laying the
ground work for what’s to follow.

Next month, I’ll begin by present-
ing the source code for a small
Delphi unit, and then we will take a
walk through the DCU file that’s
produced by compiling this unit,
examining the many wonders
contained therein!

Finally, I’ll extend the DCU
Seeker program so that when you
double click a file in the list, it will
display a form containing a lot
more information on the file in
question. See you then!

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level Windows. He is the Technical
Editor of Developers Review
which is also published by iTec.
You can contact Dave at
TechEditor@itecuk.com

	So Why Decipher The DCU?
	But What About Version problems?
	DCU File Format Basics...
	Desperately Seeking DCUs...
	ScanLine Secrets: Matters Arising And More Ideas...
	Conclusions

